A new characterization of bivariate copulas
نویسندگان
چکیده
A new characterization of bivariate copulas is given by using the notion of Dini derivatives. Several examples illustrate the usefulness of this result.
منابع مشابه
A note on "Generalized bivariate copulas and their properties"
In 2004, Rodr'{i}guez-Lallena and '{U}beda-Flores have introduced a class of bivariate copulas which generalizes some known families such as the Farlie-Gumbel-Morgenstern distributions. In 2006, Dolati and '{U}beda-Flores presented multivariate generalizations of this class. Then in 2011, Kim et al. generalized Rodr'{i}guez-Lallena and '{U}beda-Flores' study to any given copula family. But ther...
متن کاملSome Results on a Generalized Archimedean Family of Copulas
Durante et al. (2007) introduced a class of bivariate copulas depending on two generators which generalizes some known families such as the Archimedean copulas. In this paper we provide some result on properties of this family when the generators are certain univariate survival functions.
متن کاملCharacterization of all copulas associated with non-continuous random variables
We introduce a constructive method, by using a doubly stochastic measure, to describe all the copulas that, in view of Sklar’s Theorem, are able to connect a bivariate distribution to its marginals. We use this to give the lower and upper optimal bounds for all the copulas that extend a given subcopula.
متن کاملLimiting Dependence Structures for Tail Events, with Applications to Credit Derivatives
Dependence structures for bivariate extremal events are analyzed using particular types of copula. Weak convergence results for copulas along the lines of the Pickands–Balkema– de Haan theorem provide limiting dependence structures for bivariate tail events. A characterization of these limiting copulas is also provided by means of invariance properties. The results obtained are applied to the c...
متن کاملModelling the Dependence of Parametric Bivariate Extreme Value Copulas
In this study, we consider the situation where contraints are made on the domains of two random variables whose joint copula is an extreme value model. We introduce a new measure which characterize these conditional dependence. We proved that every bivariate extreme value copulas is totally characterized by a conditional dependence function. Every twodimensional distribution is also shown to be...
متن کامل